

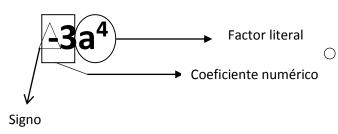
ELABORADA POR LOS PROFESORES: JHONNY DE JESÚS Y ROLANDO MONTAÑO

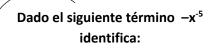
Expresiones Algebraicas

Algebra es la rama de la matemática que estudia la cantidad considerada del modo más general posible.

Los símbolos usados en algebra para representar las cantidades son los **números** y **letras**. Los **números** se emplean para representar cantidades conocidas y determinadas, en cambio, las **letras** se emplean para representar toda clase de cantidades, ya sean conocidas o desconocidas.

Una **expresión algebraica** es la representación de un símbolo algebraico o de una o más operaciones algebraicas.


Un término algebraico consta de:


a) signo

b) coeficiente numérico

c) factor literal

Ejemplo:

Factor literal: ____

Coeficiente numérico:

Los términos de una expresión algebraica se encuentran separados por signos positivos o negativos. Por ejemplo la expresión $-2x^2 + \frac{3}{2}x - 5$ consta de tres (3) términos.

El grado de un término es la suma de los exponentes del factor literal

Ejemplo:

En el término 3x³ tiene grado 3 (por el exponente de x)

En el término $4x^2y^3$ tiene grado 5 (2 + 3, la suma de los exponentes)

El grado de una expresión algebraico es el mayor exponente de sus distintos términos.

Ejemplo:

En la expresión $3x^3 + 5y^5$ tiene grado 5 (por el grado del segundo término)

En el término $4x^2y^3 - 4b^3y^2z^7$ tiene grado 12 (por el grado del segundo término)

Las expresiones algebraicas se pueden clasificar según el número de términos que posea:

MONOMIO: tiene un término Ej. 5 x²yz⁴; $\frac{x^2 - y^2}{a + b}$

BINOMIO: tiene dos términos Ej. $7\sqrt{xy} + y^5$; p + q

TRINOMIO: tiene tres términos Ej. $x^2 + 3x - 5$

POLINOMIO: tiene más de tres términos Ej. Inventa uno _____

Un **polinomio** puede ser **ordenado** de manera ascendente o descendente con respecto a una letra, por ejemplo si se quiere ordenar el polinomio $-5x^3 + x^5 - 3x + x^4 - x^2 + 6$ en orden descendente con relación a "x" este será $x^5 + x^4 - 5x^3 - x^2 - 3x + 6$.

Otro ejemplo si se quiere ordenar el polinomio $x^4y-7x^2y^3-5x^5+6xy^4+y^5-x^3y^2$ en orden ascendente con relación a "x" será escribirlo: $y^5+6xy^4-7x^2y^3-x^3y^2+x^4y-5x^5$.

Dos o más términos son semejantes cuando tienen la misma parte literal, o sea, cuando tienen iguales letras afectadas de igual exponente.

Ejemplo:

El término $3x^2y\ y$ el término $2x^2y$, son semejantes. (tiene factor literal iguales)

El término -2n y el término +5n , son semejantes. (tiene factor literal iguales)

El término $-8a^3b^5$ y el término a^3b^5 , son semejantes. (tiene factor literal iguales)

CÁTEDRA: MATEMÁTICA

EJERCICIOS: ahora te toca a ti demostrar lo que aprendiste

1) Define con tus palabras:

- a) Coeficiente numérico
- b) Factor literal
- c) Término algebraico

2) En cada término algebraico, determina el coeficiente numérico, factor literal y el grado.

- a) $3x^2v$
- b) m
- c) mc²
- d) -vt
- e) 0,3ab⁵
- f) 3
- g) $-8x^3v^2z^4$

h)
$$-\frac{\sqrt{2}}{3}a$$
 i) $-\frac{1}{2}x^3$ j) $\frac{7a^2}{3}$ k) $\frac{-3m}{4}$ l) $\frac{3}{4}a^4b^2$

i)
$$-\frac{1}{2}x^{2}$$

j)
$$\frac{7a^2}{3}$$

k)
$$\frac{-3m}{4}$$

$$1) \frac{3}{4}a^4b$$

3) Determina el grado y el número de términos de las siguientes expresiones:

a)
$$7x^2y + xy$$

b) -3 + 4x - 7x² c) -2xy d) vt +
$$\frac{1}{2}at^2$$

d) vt +
$$\frac{1}{2}at^2$$

Por otra parte dos o más términos se pueden sumar o restar si y solo si, los términos son semejantes.

Ejemplo:

Reducir las siguientes expresiones algebraicas:

(a)
$$5x + x + 2x = 8x$$

(b)
$$\frac{1}{2}x^2y + xy + \frac{1}{4}x^2y + \frac{1}{8}x^2y = \frac{7}{8}x^2y + xy$$

Al ser los términos semejantes se pueden sumar por lo tanto, se coloca el mismo factor literal v se suman los coeficientes.

Observa que el término "+xy" no es semejante con más ningún otro por lo tanto no se puede sumar con otro término.

EJERCICIOS: ahora te toca a ti demostrar lo que aprendiste

Reducir las siguientes expresiones:

(a)
$$-a+b-c+8+2a-19-2c-3a-3-3b+3c$$

(b)
$$\frac{1}{2}a + \frac{1}{3}b + 2a - 3b - \frac{3}{4}a - \frac{1}{6}b + \frac{3}{4} - \frac{1}{2}$$

(c)
$$-\frac{3}{4}a^2 + \frac{1}{2}ab - \frac{5}{6}b^2 + 2a^2 + \frac{1}{6}b^2 - \frac{3}{4}ab - 2ab$$

(d)
$$m^2 + 71mn - 14m^2 - 65mn + m^3 - m^2 - 115m^2 + 6m^3$$

(e)
$$a^{m+2} + 3 - 2a^{m+2} + 18 - x$$

El **valor numérico** de una expresión algebraica es el resultado que se obtiene al sustituir las letras por valores numéricos dados y efectuar después las operaciones indicadas.

Ejemplo:

Halle el valor numérico de las expresiones siguiente para:

$$m = 1/2 p = 1/4 a = 1 b = 2 n = 2/3 d = 4$$

$$(4m + 8p)(a^2 + b^2)(6n - d) = \left(4\left(\frac{1}{2}\right) + 8\left(\frac{1}{4}\right)\right)(1)^2 + (2)^2\left(6\left(\frac{2}{3}\right) - (4)\right) =$$

$$= \left(\frac{4}{2} + \frac{8}{4}\right)(1 + 4)\left(\frac{12}{3} - 4\right) = (2 + 2)(1 + 4)(4 + 4) = 4.5.8 = 160$$

EJERCICIOS: ahora te toca a ti demostrar lo que aprendiste

Tomando en cuenta los mismos valores del ejemplo calcula el valor numérico de las siguientes expresiones:

1)
$$b^2(p+d)-a^2(m+n)$$

2)
$$\frac{4(m+p)}{a} \div \frac{a^2+b^2}{2}$$

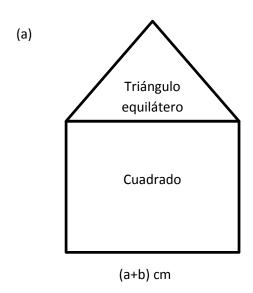
3)
$$2ma + 6(a^2 - b^2)$$

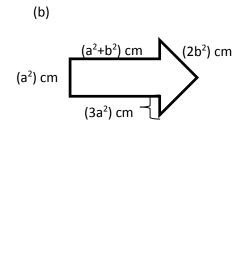
Con las cantidades algebraicas, representadas por letras, pueden hacerse las mismas operaciones que con los números aritméticas. La representación de cantidades por medio de símbolos o letras suele ofrecer dificultades, ofrecemos algunos ejemplos:

- a) Escríbase la suma del cuadrado de "a" con el cubo de "b": a² + b³
- b) Compré tres libros a un precio de "x" Bs cada uno, 6 lápices a "y" Bs cada uno y "m" borras a "z" Bs cada una. ¿Cuánto he gastado? (3x + 6y + mz)Bs
- c) Compré "x" libros por "m" Bs ¿Cuánto me ha costado cada uno? Cada libro ha costado (m/x) Bs
- d) Tenía 9 Bs y gasté "y" Bs. ¿Cuánto me queda? Me quedan (9 y) Bs

EJERCICIOS: ahora te toca a ti demostrar lo que aprendiste

- 1) Escriba la suma de a, b y m.
- 2) Escríbase la suma del cuadrado de m, el cubo de b y la cuarta potencia de x.
- 3) Siendo "a" un número entero, escríbanse los dos números enteros consecutivos posteriores a "a".
- 4) Siendo "y" un numero entero par, escríbanse los tres números pares consecutivos posteriores a "y".
- 5) Pedro tenía "a" Bs, cobró "x" Bs y le regalaron "m" Bs. ¿Cuánto tiene Pedro?
- 6) Escríbase la suma del duplo de "a" con el triple de "b" y la mitad de "c".
- 7) Tenía "a" Bs y cobré "b" Bs. Si el dinero que tengo lo utilice para comprar (m-2) libros ¿a cómo sale cada libro?




EJERCICIOS VARIADOS:

1) Calcula el valor numérico de las expresiones algebraicas siguientes, considerando:

Expresión algebraica	Reemplazar: a=2; b=-5; c=-3; d= -1; f=0	Resultado
5a ² -2bc-3d		
4ab-3bc-15d		
2a ² -b ³ -c ³ -d ⁵		
$\frac{c}{3} + \frac{b}{5} - \frac{a}{2}$		
$(b+c)^2$		

2) Determine el perímetro de las siguientes figuras.

3) Reduzca términos semejantes eliminando los paréntesis.

a)
$$(a - b) - (b - a) =$$

b)
$$(2a + c - 3b) - (7a + 4b - 8c) =$$

c)
$$a + (b - c) + 2a - (a + b) =$$

d)
$$a - 5b - [-3b - (a - b) + 2a] =$$

e)
$$12m^3 - [5m^2 + m - 1 - (m^3 + 2m^2 - 3m + 7)] =$$

f)
$$3x + \{-5y - [-xy + (4x - 2xy - y)]\} =$$

g)
$$12a - \{-6b - [-3c - (9b - 12a + c)]\} =$$

h)
$$8x - (15y + 16z - 12x) - (-13x + 20y) - (x + y + z) =$$

i)
$$-(x-2y)-[{3x-(2y-z)}-{4x-(3y-2z)}]=$$

j)
$$3a + (a + 7b - 4c) - (3a + 5b - 3c) - (b - c) =$$

k)
$$9x + 13y - 9z - [7x - {-y + 2z - (5x - 9y + 5z) - 3z}] =$$

m)
$$6a - 7ab + b - 3ac + 3bc - c - \{(8a + 9ab - 4b) - (-5ac + 2bc - 3c)\} =$$

- 4) Escribe:
- a) Un polinomio ordenado sin término independiente:
- b) Un polinomio no completo y ordenado: _____
- c) Un polinomio de cuatro (4) términos, completo y con coeficientes impares:
- d) Un binomio con coeficientes negativos:
- e) Un monomio de grado tres (3): _____
- f) Un polinomio de grado cinco (5), cuatro términos y término independiente -2:

FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES

CÁTEDRA: MATEMÁTICA

Al multiplicar expresiones algebraicas, se multiplican los coeficientes y a continuación de este producto se escriben las letras (parte literal), poniéndole a cada letra el exponente igual a la suma de los exponentes que tengan la misma base.

Ejemplo:

(a)
$$(-x.y^2) \times (-5mx^4y^3) = +5mx^{1+4}y^{2+3} = 5mx^5y^5$$

(b)
$$(-ab^2) \times (4a^mb^nc^3) = -4a^{m+1}b^{n+2}c^3$$

(c)
$$(x^2 - x + 1) \times (x^2 + x - 1) \times (x - 2) =$$
 (aplicando propiedad distributiva)

$$(x^{4} + x^{3} - x^{2} - x^{3} - x^{2} + x + x^{2} + x - 1) \times (x - 2) = (x^{4} - x^{2} + 2x - 1) \times (x - 2) = x^{5} - 2x^{4} - x^{3} + 2x^{2} + 2x^{2} - 4x - x + 2 = x^{5} - 2x^{4} - x^{3} + 4x^{2} - 5x + 2$$

EJERCICIOS: ahora te toca a ti demostrar lo que aprendiste

Realiza las siguientes multiplicaciones:

1)
$$(4x)(6x^2) =$$

2)
$$(5ab^2)(6a^3b)=$$

3)
$$(-xy^2)(-3x^2y)=$$

$$4) \quad \left(b^3\right)\left(\frac{-b^2c}{5}\right) =$$

5)
$$(-4a^2b)(ab^2)=$$

$$6) \quad \left(\frac{3}{7}m^2n\right)\left(-\frac{7}{14}a^2m\right) =$$

$$7) \quad \left(-3x^3y^4\right)\left(\frac{xy^4z}{6}\right) =$$

8)
$$(a^m)(a^{m+1})=$$

8)
$$(a^m)(a^{m+1}) =$$

9) $(4x^{a+2})(-5x^{a+5}b^{a+1}) =$

10)
$$\left(-\frac{5x^2y^3}{6}\right)\left(-\frac{3x^my^{n+1}}{10}\right) =$$

11)
$$(-2xyz)(3x^2yz^3)(5x^2yz^4)=$$

12)
$$\left(\frac{2}{3}a^{m}\right)\left(\frac{3}{4}a^{2}b^{4}\right)\left(-3a^{4}b^{x+1}\right)=$$

13)
$$3rs^2(r-2s+5r^2s^3)=$$

14)
$$\frac{2}{5}a^2\left(\frac{1}{2}a - \frac{2}{3}b\right) =$$

15)
$$(x+3)(x^3-3x^2+1)=$$

16)
$$(2x+3)(x^3-2x^2+3x-1)=$$

17)
$$(a+b)(2a-3b)=$$

18)
$$(4a-5b)(3a^2-5ab+2b^2)=$$

Un **producto notable** son ciertas multiplicaciones que cumplen reglas fijas y cuyo resultado puede ser escrito por simple inspección, es decir, sin realizar la propiedad distributiva o multiplicación. A continuación veremos los **casos de producto notable**:

l) Cuadrado de la suma de dos cantidades:

Elevar al cuadra dos términos (a+b) equivale a multiplicar este binomio por sí mismo y tendremos:

$$(a+b)^{2} = (a+b)(a+b) = a^{2} + ab + ab + b^{2} = a^{2} + 2ab + b^{2}$$
$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

II) Cuadrado de la diferencia de dos cantidades:

Elevar al cuadra dos términos (a-b) equivale a multiplicar este binomio por sí mismo y tendremos:

$$(a-b)^{2} = (a-b)(a-b) = a^{2} - ab - ab + b^{2} = a^{2} - 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

III) Producto de la suma por diferencia de dos cantidades:

Sea el producto (a+b) (a-b) efectuando esta multiplicación tenemos:

$$(a+b)(a-b) = a^2 - ab + ab + b^2 = a^2 - b^2$$
$$(a+b)(a-b) = a^2 - b^2$$

IV) Cubo de binomio:

Si elevamos (a + b) al cubo, tendremos:

$$(a+b)^3 = (a+b)(a+b)(a+b) = (a^2+ab+ab+b^2)(a+b) = a^3+2a^2b+ab^2+a^2b+2ab^2+b^3$$
$$(a+b)^3 = a^3+3a^2b+3ab^2+b^3$$

En cambio sí elevamos al cubo la siguiente expresión (a-b), se tendría:

$$(a-b)^3 = (a-b)(a-b)(a-b) =$$

$$(a-b)^3 = \underline{\hspace{1cm}}$$

$$(a+b)^3 = \underline{\hspace{1cm}}$$

V) Producto de dos binomios de la forma (x+a) (x+b):

Ayúdanos a conseguir el producto notable de la forma:

EJERCICIOS: ahora te toca a ti aplicar los productos notables

Identifica el caso de producto notable y aplica la regla respectiva:

1.
$$(1+3x^4)^2 =$$
 12. $(a^{2n}b^m - 2x^3y^a)(a^{2n}b^m + 2x^3y^a) =$

2.
$$(7a^2b^3 + 5x^4)^2 =$$
 13. $(x^{a+1} - 8)(x^{a+1} + 9) =$

3.
$$(a^3 - b^2)(a^3 + b^2) =$$
 14. $(3\sqrt{7}a^{x+1}b^m - \frac{1}{5}b^{-7}c^{-2})(3\sqrt{7}a^{x+1}b^m + \frac{1}{5}b^{-7}c^{-2}) =$

4.
$$(1-8xy)\cdot(1+8xy) =$$
 15. $(2+y)(4-2y+y^2) =$

4.
$$(1-8xy) \cdot (1+8xy) =$$
 15. $(2+y)(4-2y+y^2) =$ 16. $(a^{x+1}-2b^{x-1})(2b^{x-1}+a^{x+1}) =$ 16. $(a^2b^2-1)(a^2b^2+7) =$

6.
$$(x+y+z)(x+y-z)=$$
 17. $(5-ab)(25+5ab+a^2b^2)=$

7.
$$(a^2 - 2b)^3 =$$
 18. $(x-1)(x^2 + x + 1) =$

8.
$$(x^3 + 6)(x^3 - 8) =$$
 19. $(2mn^2 + 3m^{-1}n^{-3})^2 =$

9.
$$(x^3y^3 - 6)(x^3y^3 + 6) =$$
 20. $(3a^{x+y} - 2)(3a^{x+y} - 5) =$

10.
$$(5a^{x+1} - 7)(5a^{x+1} - 4) =$$
 21. $(\frac{2}{3}a^2b - \frac{1}{5}x^3y^4)^2 =$

11.
$$\left(\frac{2}{3}a^6b^4c^{-3} + 11ab^2\right) =$$
 22. $\left(m^2 - m + n\right)\left(n + m + m^2\right) =$

Completar el término que falta en los siguientes productos notables:

FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES

CÁTEDRA: MATEMÁTICA

1)
$$(x + 3)^2 = x^2 + ___+ + 9$$

3)
$$(x-7)^2 = ___ +49$$

5)
$$(_ - 8)^2 = x^2 - _ + _$$

7)
$$(x + 12) (x - 12) = x^2 - ____$$

9)
$$(x +)(x -) = -225$$

11)
$$(x+7)(x-4) = x^2 + -28$$

13)
$$(x+5)(x+12) = + + 60$$

15)
$$(x+6)^3 = x^3 + ___ + __ + 216$$

2)
$$(x-5)^2 = ___-10x + 25$$

4)
$$(x + 9)^2 = x^2 ___ +___$$

6)
$$(x - ___)^2 = ___-14x + ___$$

8)
$$(x - ___) (x + 13) = x^2 - ____$$

10) (
$$x - 25$$
) ($x + 25$)= x^2 -

12)
$$(x-5)(x-8) = ___-13x +____$$

14)
$$(x-9)(x-7) = x^2 ___+$$

16)
$$(x-1)^3 = -3x^2 + -1$$

En los siguientes productos notables corregir el error o los errores

1)
$$(x-6)^2 = x^2 + 12x + 36$$

$$(x^2 + 12x + 36)$$
 2) $(x + 8)^2 = x^2 + 8x + 16$

3)
$$(x-11)^2 = x^3 + 22x - 121$$

4)
$$(x + 16)^2 = x^2 - 32x + 526$$

5)
$$(x+3)^3 = x^3 +9x -27x +27$$

6)
$$(x-4)^3 = x^3-48x^2-12x+64$$

7)
$$(x-7)(x+15) = x^2 - 8x-105$$

8)
$$(x-13)(x+13) = x^2 + 169$$

Desarrolla y después reduce:

1)
$$9 - (x+4)^2 =$$

$$2) - (8x+3)^2 =$$

3) 2
$$(y + 5)^2 =$$

4)
$$(3x + 1)^2 + (4x + 1)(2x-5) =$$

5)
$$6x + 1 - (7x - 4)^2 =$$

Factorizar una expresión algebraica consiste en expresarle como un producto notable, también se conoce como el proceso que consiste en transformar un polinomio como producto de dos o más factores. As{i por ejemplo la expresión 3a + 3b la puedo expresar como el producto de dos factores (3) (a+b), ese proceso es el que llamamos factorización.

CÁTEDRA: MATEMÁTICA

Existen diferentes métodos para factorizar expresiones algebraicas.

I) FACTOR COMÚN

Para factorizar una expresión algebraica por el método del factor común, se busca el máximo común divisor de los coeficientes y la parte literal común con el menor exponente.

Ejemplos:

1.
$$3x^2 - 7x = x(3x - 7)$$

La expresión algebraica consta de dos términos, se determina el o los factores comunes en los dos términos, en este caso es la "x".

2.
$$12x+18y-24z=6.2.x+6.3.y-6.4.z=6(2x+3y-4z)$$

La expresión algebraica consta de tres términos, se determina el o los factores comunes en los tres términos, en este caso es el "6".

3.
$$2x(a+b)+4m(a+b)=2(a+b)(x+2m)$$

La expresión algebraica consta de dos términos, se determina el o los factores comunes en los dos términos, en este caso es "2" y (a+b).

EJERCICIOS: ahora te toca a ti demostrar lo que aprendiste

Factorizar las siguientes expresiones algebraicas:

1.
$$a^2b^2c^2 - a^2c^2x^2 + a^2c^2y^2$$

2.
$$93a^3x^2y - 62a^2x^3y^2 - 124a^2x$$

3.
$$25x^7 - 10x^5 + 15x^3 - 5x^2$$

$$4. \quad a^2 + ab + ax + bx$$

5.
$$a^2x^2 - 3bx^2 + a^2y^2 - 3by^2$$

$$6. \quad ax - 2bx - 2ay + 4by$$

7.
$$4a^3 - 1 - a^2 + 4a$$

8.
$$3abx^2 - 2v^2 - 2x^2 + 3abv^2$$

9.
$$6m - 9n + 21nx - 14mx$$

Resp:
$$a^2c^2(b^2-x^2+y^2)$$

Resp:
$$31a^2x(3axy-2x^2y^2-4)$$

Resp:
$$5x^2(5x^5 - 2x^3 + 3x - 1)$$

Resp:
$$(a+b)(a+x)$$

Resp:
$$(x^2 + y^2)(a^2 - 3b)$$

Resp:
$$(x-2y)(a-2b)$$

Resp:
$$(a^2 + 1)(4a - 1)$$

Resp:
$$(x^2 + y^2)(3ab - 2)$$

Resp:
$$(2m-3n)(3-7x)$$

FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES

CÁTEDRA: MATEMÁTICA

10.
$$1+a+3ab+3b$$

Resp:
$$(a+1)(1+3b)$$

11.
$$\frac{3}{4}x^2y - \frac{8}{9}xy^2 =$$

12.
$$\frac{1}{2}a^2b^3 + \frac{1}{4}a^3b^4 - \frac{1}{8}a^2b^5 + \frac{1}{16}a^4b^2 =$$

13.
$$\frac{4}{35}a^2b - \frac{12}{5}ab + \frac{8}{15}a^2b^3 - \frac{16}{25}a^3b =$$

II) DIFERENCIA DE CUADRADO PERFECTO

Una cantidad es cuadrado perfecto cuando es el cuadrado de otra cantidad, o sea, cuando es el producto de dos factores iguales. Ejemplo: 9 es cuadrado perfecto de 3 ya que al multiplicar 3.3 = 9.

Anteriormente se vieron los casos de producto notable específicamente $(a+b)(a-b)=a^2-b^2$: luego, recíprocamente se cumple $a^2-b^2=(a+b)(a-b)$

Ejemplos

1. $1-a^2 = (1+a)(1-a)$

2.
$$\frac{a^2}{4} - \frac{b^4}{9} = \left(\frac{a}{2} + \frac{b^2}{3}\right) \left(\frac{a}{2} - \frac{b^2}{3}\right)$$

3. $49x^2y^6z^{10} - a^{12} = (7xy^3z^5 + a^6)(7xy^3z^5 - a^6)$

Se halla la raíz de $\sqrt{1}\,$ es 1; luego la raíz de $\sqrt{a^2}=a\,$. Multiplica la suma de estas raíces (1+a) por la diferencia (1-a)

EJERCICIOS: ahora te toca a ti demostrar lo que aprendiste

Factoriza:

1)
$$81-n^6$$

5)
$$\frac{1}{4}a^4 - v^6$$

2)
$$a^6b^2 - 121a^{10}$$

6)
$$\frac{4s^4}{25} - \frac{1}{49}$$

3)
$$\frac{81}{4} - \frac{n^6 d^2}{a^2}$$

7)
$$a^6m^8n^{12}-169$$

4)
$$4a^6 - 1$$

8)
$$a^{10n} - b^{10n}$$

5

Más allá de la guía

CÁTEDRA: MATEMÁTICA

http://es.calameo.com/read/0009436389f718781eacd

http://www.mathema.cl/documentos/Guia de Productos Notables 001.pdf

http://www.rmm.cl/usuarios/mruiz1/doc/Guia%20Factorizacion.pdf